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ABSTRACT 

Let XI and X2 be two mixing Markov shifts over finite alphabet. If the 

entropy of Xl is strictly larger than the entropy of X~, then there exists 

a finitary homomorphism r : Xl --~ X2 such that  the code length is an 

L p random variable for all p < 4/3. In particular, the expected length of 

the code r is finite. 

1. Introduct ion  

In 1977 Keane and Smorodinsky [5] constructed a finitary homomorphism (or 

coding) from any Bernoulli process X to another Bernoulli process )~ of a strictly 

lower entropy. In the same paper they announced that the expected code length 

should be finite. This, however, is by no means evident and the proof was only 

given much more recently in [6]. 

The result of [5] was extended to Markov shifts by Akcoglu, del Junco and Rahe 

[1]. They construct a finitary coding between X and )~ under a sole assumption 

that X is ergodic Markov and )~ is mixing Markov of a lower entropy. Their 

construction is similar to [5], an essential role being played by a low entropy 

marker process. The presence of markers makes it possible to represent almost 

every source sequence x E X as a consistently ascending nested family of words, 

which fill longer and longer "skeletons" determined by the marker process. Fillers 

of sufficiently large rank are encoded to corresponding fillers in )(, thus eventually 
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defining the required finitary coding r X --+ )(. Akcoglu, del Junco and Rahe, 

too, claim without proof that the code length should have a finite expectation. 

There has been renewed interest in finitary coding in connection with non- 

commutative Bernoulli schemes. Actually, the fact that the Keane-Smorodinsky 

coding has finite expected length is essential in a recent work of Hamachi and 

Keane [4]. 

The aim of this paper is to present a proof that for mixing Markov shifts the 

code length has finite expectation. We prove even more by showing that it is an 

L p function for some p > 1. 

First we deal with a Markov-to-Bernoulli coding, in which case we simplify and 

correct the Bernoulli-to-Bernoulli argument in [6]. In particular, it follows that  

the length of the Keane-Smorodinsky code between two Bernoulli processes of 

unequal entropies has finite LP-norm for all p < 2. It remains an open question 

whether the variance is finite. Our method relies on an application of HSlder 

inequality for appropriately chosen exponents that assure convergence of certain 

series. In contrast to [6] we consider individual fillers globally without classifying 

them according to length. This will be effective thanks to an application of a 

simplified version of the Bernstein inequality. The formulas for some distributions 

such as U-l ,  br and l0 will be derived in a detailed fashion in a preliminary section 

(we note that  in [6] they are only asymptotically correct). A separate section is 

devoted to Bernoulli-to-Markov coding. Finally, as in [1], the Markov-to-Markov 

coding in obtained as a composition. 

2. D e f i n i t i o n s  a n d  n o t a t i o n  

By a p roc e s s  with alphabet A we mean a dynamical system (X, #, T),  where 

X -- A z, T is the left shift, and # is a shift-invaxiant Borel probability measure 

on X. All processes studied in this paper are with finite alphabet. Generally, 

the probability measure for any process will also be denoted by P. 

Our notation will be based on [1] and [6]. For a Markov process given by a 

transition matrix (Pij) we set P m i n  = min{pij : p~j r 0}. The process will be 

assumed mixing, which means that the matrix is irredudicible and aperiodic. 

In particular, there exists a unique strictly positive vector (Pi) such that  the 

powers of the transition matrix converge with exponential speed to the matrix 

with all its rows identical with (Pi). In the associated Markov process (X, #, T) 

the pi's represent the stationary marginal probabilities, Pi = P(x ,~  = ai)  for 

every n E Z. The entropy of the Markov process X is given by the well-known 

formula h ( X )  = - ~ i , j P i P i j  logpij. Recall that for Markov processes mixing 
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implies h(X) > 0 (except for the trivial case IA] = 1) and moreover the process 

has a m a r k e r  M,  i.e. a collection of blocks of the same length k such that  

(i) each word in M begins with the same symbol al ,  

(ii) no word in M overlaps a word in M, 

(iii) arbitrarily long concatenations of words from M 

occur with positive probabilities. 

According to the construction in [1], the length k can be chosen arbitrarily large 

and the probability that  a marker occurs at a given position decays exponentially 

with k. By ergodicity, almost every source sequence x in X splits into runs of 

markers labeled in a natural  manner by +1, -t-2,... and separating blocks labeled 

0, +1, + 2 , . . .  We assume that  the 0-th coordinate of x is covered by either the 

run of markers labeled - 1  or the subsequent 0-th separating block. By uj we 

denote the number of markers in the j - th  run while lj stands for the length of 

the j - t h  separating block. 

For every r = 1 ,2 , . . .  we denote by sr = st(x)  the s k e l e t o n  o f  r a n k  r. 

This is defined as the truncation of x to a finite segment around 0 such that  

the separating blocks in x are replaced by gaps of the same length, and with 

the property that  the extreme left and right runs of markers each contain at 

least r markers while the internal runs, if any, each contain less than r markers. 

Moreover, neither the immediately preceding nor the immediately following k- 

block of x is a marker block. We denote by - m r  < 0 and nt  > 0 the label of 

the first and the last run of markers in st,  respectively. Whenever convenient 

we will also consider a skeleton as an appropriate non-indexed finite sequence s 

consisting of runs of a k-block labeled M separated by gaps. For a skeleton s we 

denote by l(s) the length of s minus the length of the last run of markers, 

l(sr) = ku_m~ +l_m,+l + . . .  + kU_l +lo + kul + . . .  +1~_1. 

As in [1], the final block of markers is only needed to determine the occurrence of 

st(x) but is not considered to be part  of that  occurrence. We define bt to be the 

number of separating blocks in st  so bt = mt  + nt  - 1. A block in x occurring 

along a single run of markers followed by a separating block will be called an 

o r d e r  o n e  filler. The  concatenation of all the order one fillers in st  will be 

referred to as the filler o f  st.  Clearly the length of the filler is equal to l(st). 
For a fixed non-indexed skeleton s the filler m e a s u r e  #s is defined on the / (s ) -  

blocks as the projection of the conditional measure #(-IS) where S is the event 
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that s occurs at [0,/(s) - 1] in x. According to [1], Lemma 5.1, the filler measure 

tz, is the product of the filler measures corresponding to order one subskeletons 

of s. Regardless of the skeleton rank, any filler measure will be denoted by #s. 

Recall that the m a r k e r  p rocess  is a stationary 0-1 process )( defined by 

~:i = 0 iff x i . - -x i+k-1  is a marker block. If the marker length k is sufficiently 

large, then the entropy of the marker process can be made as small as needed. 

We define the filler e n t r o p y  f = h(X)  - h()() .  

Let r X - r  )f  be a homomorphism, referred to as coding,  between two 

processes (X, #, T), ()(, p,7~). This means that r is measure preserving and 

r  = Tr  a.e. The code  l eng th  is defined as the least positive integer 

C = C(x)  such that there exists an integer interval J of length C containing 0 

with the property that for a.e. y the condition yj = xj for j E J implies that the 

encoded sequences r r agree at the 0-th coordinate, r = r We let 

C(x)  = oo if such a finite J does not exist. In this paper we will study finitary 

codings, i.e. such that C(x) is finite with probability one. The code length C(x) 

will be treated as a random variable. 

We will only consider mixing Markov processes. As in [1], the coding between 

two such processes will be achieved in two steps. 

In the first step, referred to as Markov-to-Bernoulli coding, we study a mixing 

Markov process ( X , p , T )  and a Bernoulli process ( )~ ,p ,T)  with h()~) = h < h = 

h(X) .  A marker in X can be selected as a single word a l . " a k  in such a way 

that the filler entropy f still exceeds the entropy h. No marker will be needed 

in the Bernoulli process )(. We fix e < ( f  - h)/3. A filler F in the skeleton 

s~(x) of the source sequence x E X, is called bad  if tz,(F) > e -l(s~)(f-~). On the 

other hand, a corresponding l(s~)-block F in �9 E )~ will be called a bad filler if 

f~($') < e -l(sr)(h+'). According to [1], only good fillers will be encoded to good 

fillers. If a filler is bad, it will be encoded as a part of a longer good filler at a 

later stage. The coding is carried out for a given source sequence x by looking at 

the ascending skeletons st(x) ,  r = 1, 2 , . . . .  By means of an "assignment" defined 

in [1], the filled skeleton sr(x) will be encoded in a consistent way if the filler F 

is good, except for a small set of exceptional cases. The conditional probability, 

given a marker structure of x, that C(x) >_ c~+l is bounded by (see [5], Lemma 

14) 
2 br-ct(sr) + p , ( F  is bad) + /2 (F  is bad), 

where c = ( f -  h -  2E)/log2 > 0 and F,F'  denote the s~-fillers in X , ) ( ,  

respectively. Our aim is to prove that if the parameter k is chosen 

sufficiently large, then E C  p is finite for every p < 2. Clearly, E C  p is finite if 
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Y~Ec~+lPP(C _> c~+1) < oo, so i t  

converge: 

suffices to show that the three following series 

o o  

$1 (p) = E 
r = l  

o c  

r = l  

o c  

r = I  

E(c,.+lP2b~-ct(~r)), 

E (c~+f#s (F  is bad)), 

E(c,.+,vf~(P is bad)). 

The second step is a Bernoulli-to-Markov coding. Now X is Bernoulli and _~ is 

mixing Markov with h(f() = h < h = h(X).  Moreover, as in [1], by extending )( 

to another mixing Markov process with a slightly larger entropy (the extension 

taking place by a length-one coding) we may assume that there exist a marker 

~ / i n  )~ and a single-word marker M in X such that the corresponding marker 

processes have the same distribution. Therefore the two marker processes can 

be identified as a common factor .~ of X and .~; now the marker process in )(  

will be referred to as "independent". Here the filler entropies are f = h - h()() 

and f = h - h()() ,  respectively. The bad fillers in X and -~ are defined as in the 

Markov-to-Bernoulli case with f in place of h and/2s in place of p. The finiteness 

of E C  p will be concluded similarly by studying the ghree series. 

In a preliminary section, distributions of the parameters of the construction 

are calculated. Here the Markov property will be exploited on several occasions 

to assure a sufficient degree of independence of random variables under consider- 

ation. The distribution of br will play a decisive rote in future calculations. Next, 

in the Markov-to-Bernoulli coding we will obtain a bound for the LN-norm of 

cr+1 and will use it (for a large N) along with HSlder inequality to prove that 

each of the three sums is finite. For S2(p) and S3(p) we will need a form of the 

Bernstein inequality (or a large deviation theorem). The proof in the Bernoulli- 

to-Markov case is similar, but S3(p) is now more difficult to handle. In the last 

section we prove a lemma which enables us to compose codes without losing some 

features of the code length. In particular, this yields a coding of finite expected 

length between any two mixing Markov processes of unequal entropies. 

3. D i s t r ibut ions  

In this section we assume that (X, #, T) is a mixing Markov process and calculate 

the distributions of the random variables ul, u - l ,  m,., n,., b,-, 11, lo. We also 
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assume tha t  the marker  M is a single word al . . .  ak and write 

rl = P ( x l  " " xk = M I Xo = ak). 

In other  words, 77 = PklP12"" ' Pk- l ,k ,  where we write PiS for Pa,%. Finally, we 

set 7 = PI /Pk l  so 7r / i s  the probabil i ty  tha t  M occurs at  a given position. 

Recall t ha t  r~ decays exponential ly with k. It  will turn out that ,  as in [6], the 

probabi l i ty  P(br  = t) decays in r rapidly enough to ensure the convergence of 

the per t inent  series. 

By the Markov proper ty  and s ta t ionar i ty  it follows tha t  the u s 's  are indepen- 

dent  and,  for j # - 1 ,  identically distr ibuted.  Clearly P ( u l  >_ 1) = 1 and 

P ( u l  >_ t) = P ( x l  . . .  xk( t -1)  = M t - I  I x - k + l . . .  xo -- M)  

= P ( z l  . . .  xk( t -1)  = Mt-1]Xo = a~:) = 77 t-1 

for t > 1. 

The  dis t r ibut ion of u-1  is quite different. First we define auxiliary events: Bo 

will mean  "Xo is contained in a marker" ,  Boa will denote "Zo is contained in the 

i- th marker  of the run of markers  containing Xo", and Bg is the negat ion of Bo. 

For any t _> 1 we have by the Markov proper ty  

P ( u - 1  >_ t lBg) = 77 t - I  and P ( u - 1  >_ t]Bo,,) = 77 t - ' .  

Therefore  

co 

P ( u - 1  ~ t) = P ( u - 1  > t]B~))P(Bg) + ~_, P ( u - 1  >_ t lBo , i )P (Boa)  
Z=I 

t 

r l -  ( o , )  =~t-iP(B~)+- E t tPzU ,-' + ~ P ( U o , i ) .  

i = l  i = t + l  

Since the probabi l i ty  tha t  M occurs at  a given position equals 77 and the reverse 

t ime process is Markov, we get for every j = 1 , . . . ,  k 

P(Bo , , ,  xo is the j - t h  element of M)  = "),r/rli-l(1 - r/), 

so P(Bo , i )  = kTrfl(1 - rl). It  is clear tha t  P ( B o )  = k"p?. Consequently 

t 

P ( u - 1  _> t) = r / t - l (1 - kTr/) + E k T ( 1  - rl)r] t + k"/r] t+l 
i = l  

= ,7 (1  + k ' r , l ( t  - 1 1 ( 1  -  11. 
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Our next aim is to calculate the distribution of br. We observe tha t  

P ( m ~  = 1) = P ( u - 1  >_ r) = r / r - 1  (1 + k"fl~(r - -  1)(1 - ~7)), 

while for i > 1 

P ( m r  = i) = P ( u - 1  < r ,u_a  < r , . . . , u _ ~ + l  < r ,u_ i  >__ r)  

= (1 - , r - I  _ ]g.y?~r(r _ 1)(1 - 77)) (1 - ?~r-1)i-2~]r-1 

and clearly 
P ( n ~  = i) = (1 - r f l -1) i - l~(  -1 

for all i. The Markov property implies that  mr  and nr  are independent,  so 

t 

P(b~ = t) = P ( m r  + n ,  = t + 1) = E P ( m r  = i ) P ( n ~  = t - i +  1) 
i=1 

= (1 + k~/(r - 1fi1(1 - ~)) ? 7  r - 1  (1 - ?~r-1)t-l?~r-1 

t 

+ E ( 1 -  ~ ( - 1 -  k v ( r -  1 ) ~ f l ( 1 - , ) )  
i=2  

• (1 - 77r-1)i-27( -1 (1 - ~ - l ) t - i ~ f - 1  

=(1 - Vr-1)t-lV2r-2 

• ( 1 +  k ' y ( r - 1 ) ~ / ( 1 -  77)+ (t-1)(1-kv(r--1)~1~(-----1- ~7))) 
1 - ~r--1 

Therefore, if k is chosen sufficiently large so that  k~7 < 1/7, we get 

P(br  = t) < (1 - ~ ' - l ) t - l~2 r -2 (1  + r - 1 + t - 1) < r t (1  - ~r-1)t-l~/2r-2. 

Now we proceed to the calculation of the distributions of the lj's. Like for uj ' s  

we note tha t  the lj 's are independent and, for j # 0, identically distributed. 

We denote by l' the separation between two consecutive markers. More for- 

mally P ( l '  = t -  1) is the conditional probability tha t  t is the least positive integer 

such tha t  x t ' . . X t + k _  1 ~ -  M given that  x - k + l " " x o  = M .  Clearly the renewal 

sequence for l' + k is 

p(j+l) 
kl 

qo = 1, ql . . . . .  qk-1  = O, qk = 71, qk+j = 7, 
Pkl  

for j > 0, where p(J) denotes the j -s tep transition probability from ak to al .  The 
- -  kl  

renewal function for l' + k is 
oo 

Q ( s )  = 1 + - -  ~ Z.,~k~v" _(j+l)ok+3o 
P} I j=0 
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and hence the generating funcion is given by the formula 

oo _(3+1) 2 
1 - ~  ~ j = 0  Pk, s 

1 
Q(s)  1 + - ~ ~ 1 7 6  (j+~ �9 p~,~ ~.- , j=oPkl  )S2 

On dividing by s k we obtain the generating function of l': 

o o  
~-~ j = 0 ~O)sJ 

1 + r/s k Y~-j=0 rr(:)sJ 

o o  

G r ( s )  = E P(I '  = 3)s  J = 71 
3=0 

where  7r(:) = p~+ l) / pk l .  

As it is c lear  t h a t  for t > 0 

we have 

P ( l '  = t) 
P(l~ = t) - P ( l '  > O) ' 

G v ( s )  - Gv(0)  
Gl,(s)  = 

1 - a t ,  (0)  
o o  

I - rl 1 + Os k ~ ~  7tO)s:  1 - 7/ 

71 (1 - , / s ~ ) ~ = 0 r ( : ) s :  - 1 
k oo 1 - r/ 1 + r/s )--~:=0 7r(S)sS 

For a m i x i n g  Markov chain  we have 7r(J) -+ 7 exponen t i a l l y  so rr O) = ~ + as ,  

where  a s -~ 0 exponen t i a l ly .  Consequen t ly ,  the  func t ion  

o o  

h(s) = ~ % s 3 

1=0 

is a n a l y t i c  on  a disk of rad ius  s t r ic t ly  grea te r  t h a n  1. We can  wri te  

G~,(s) - ,1 7 ( 1 -  ~s~) + ( 1 -  ~ s k ) ( 1 -  s)h(s)  - l + s 

1 - r/ 1 - s + 7r/s ~ + 77(1 - s)s t :h(s )  

T h e  va lue  of the  las t  d e n o m i n a t o r  a t  s = 1 is equal  to -~r/while, if k is suff icient ly 

large, i ts  de r iva t ive  is close to - 1 .  Th i s  implies  t ha t  the  d e n o m i n a t o r  does no t  

van ish  in a ce r t a in  n e i g h b o r h o o d  of s = 1. Therefore  the  power series 

o o  

Gt, (s) = E g ( l l  = j ) s :  
3=1 

has  an  a n a l y t i c  c o n t i n u a t i o n  t h ro u g h  the  po in t  s = 1. Since the  coefficients are  

n o n n e g a t i v e ,  we conc lude  t h a t  the  power series converges  in a disk Is[ < p, where  
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p > 1. Equivalently, the probabilities P(l l  = j )  decay exponentially and li has 

exponential moments. In particular, 

E(l l  N) = C I ( k , N )  < oc 

for every N > 1. Actually, by estimating the derivatives of the generating 

function it is not hard to see that E(l l  ~v) <_ C2(N)kN~? -N ,  but we will not 

need this formula. 

Finally we will examine the distribution of 10. Denote by r the least non- 

negative integer t such that a marker starts at t, i.e. x t " . x t + k - 1  = M .  It is 

clear that the conditional distribution of T given that x0 is in a marker coincides 

with that of ll. 

Now, for every i in the alphabet let q, be the minimal positive integer q such 

that p(q) ak,i > O. We have 

P ( r  > t, Bg) = Z P ( r  > t, B~ I xo = i )P(xo  = i) 

~- ~ P ( T  ~__ t, B~ I xo = i, X - q , - k + i  " "  X-q,  = M ) P ( x o  = i) 
i 

~- Z P ( T  ~_ t, Sg ,  x 0 -~ i, X_q,_k+l " "  X_q, ---- M )  

x P(xo = i ) / P ( x o  = i, X _ q _ k + l . . . X _ q ,  -~ M )  

< m a x P ( r  >_ t, B~, xo = i, x_q ,_k+l . . .X_q ,  = M )  
t 

i 

<C3~ -1 m a x P ( r  >_ t, Bg, xo = i, x - q , - k + v . ,  x_q, = M )  
I 

=C3~,r/-1 m a x P ( r  >_ t, Bg, xo = i [ X _ q  _ k + l  "" " X - q ,  = Mfi?. 

But by the minimality of q, we get 

P ( r  >_ t, Bg, xo = i [ x -q , - k+ l  " " x - q ,  = M )  

<_ P(l '  >_ q, + t) <_ P(l '  > O)P(l~ >_ t), 

so 

P(T >_ t, B~) <_ C4P(l l  >_ t). 

The latter decays exponentially and we have 

E(1Bar N) < C4E(I, ~) < Cs(k, N) < oo. 
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In a symmetric fashion we define ~-_ for the reverse time process. It is clear that  

if x0 is not i n a m a r k e r ,  thenl0  = T + T - - - 1 .  On the other hand, if x0 is in 

a marker, then the (conditional) distribution of l0 is the same as that of ll. It 

follows that l0 has exponential moments and 

E(lo N) <_ C6(k, N) < oc. 

4. Norm of skeleton length 

For a positive integer N > 2 we are going to estimate the LN-norm of Cr+l- 

Clearly 

and if br+l = t then 

Cr+ 1 = k -4- l (S r+l )  -4- ]g(r -4- 1), 

/(8r+1) : kU-m~+L -4- 10 -4- ~1 -4- ~2, 

where ~1 is a sum of t - 1 independent random variables lj (j • 0), and ~2 

<_ k(r -4- 1)(t - 1) corresponds to the joint length of markers inside the skeleton. 

For ~1 we write 

oo 

E~IN = E E(~N Ibv+l = t ) P ( b r + l  = t) .  
t = l  

Since 
(vl + . . .  + vt-:)  N < (t - 1)N-I(vlN +.. .-4-vN_I) 

for any vj : 0, we get, using the upper bound for P(br+l = t), that  

oo 

E~ N < E ( t  - 1)NEllN(r -4- 1)t(1 -- ~r)t-17/2~ 
t = l  

oo 

_<Ca(k , N)(r -4- 1)~ 2~ E tN+l(1 -- 7It)t-i" 
t = l  

On the other hand, by approximating the integral F(N -4- 2) = f o  xN+le-~ dx 

by its Riemann sums it is not hard to see that 

--+1 
F(N -4- 2)(~ -(g+2) 

as 0 < 5 -+ 1. Consequently, for 5 = ~r, 

E~I N <_ Cl (k ,N) ( r  + 1)~? - g r .  
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As to u -m~,  we have P(u-m~ _> r + j )  = rfl for j >_ 0. Therefore  for 7/< 1/2 we 

can write 
{:x) oo 

E(uNm_ ~) = ~ tg~t-~(1 -- ~?) _< ~--~(r + j )g2-J  
t = r  j = 0  

oo 

3 = 0  j = O  

=CT(N)r N. 

We also es t imate  

a~s for 41. 

E~ N <_kN(r + 1)NE(b~+I -- 1) N 
oo 

<_kN(r + 1) N ~-'~(t - 1)N(r + 1)t(1 -- r f ) t - l r f l  ~ 

t : = l  

<_Cs(k,g)(r + 1)N+lr] -rN, 

Altogether  the three upper  bounds yield 

(ECr4.1N) I/N ~_ Cg(k, N)r2r] --r. 

5. C o n v e r g e n c e  o f  t h e  f i r s t  s e r i e s  

Given 1 < p < 2 we let p' = p'(N) = N/p and q' be such tha t  

1 1 
P' + ~  1. 

Note tha t  1 < q ' < _ _ 2 i f N > 4 .  

We will now show tha t  S1 (p) is finite. 

By the HSlder inequality we obtain 

E(c~+lP2 b~-cl(s~)) <_ (Ec,.+lPP')l/P'(E2q'(br-cl("r)))l/q '. 

But,  given tha t  b~ = t, the random variable l(s,.) is bounded below by the sum 

of t - 1 independent  copies of ll. Therefore  

(2O 

E2q'(b~-cl(sr)) <- E 2q't(Gh ( 2 - c ) ) t - l p ( b ~  = t) 

t = l  

oo 

< ~-~((G h (2-~)) - '  (4G h (2-~)) tr t~2~-2 
t = l  

=Clo(k)r~ 2r, 
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where 
o o  

Clo(k) : ~-2  Z ( ( a l ,  ( 2 - c ) ) - l t ( 4 a h  (2-c)) t  
t = l  

is finite if k is sufficiently large (so tha t  7? is small enough for 4Gl, (2 -c)  < 1). 

Therefore  

E(c~+lv2 br-dsr) <_(Ec~+I N)p/N Clo(k)l/q'rr]2r(N-v)/N 
< (cg(k, g )r2n-~)  p C~o(k)r~ 2~IN-pl/N 

<_C11(k, N, p)r5rl (2-p-2p/N)~ , 

so ~ E(c~+lP2 b~-d(~r)) < oo because we can choose N > 2p/(2 - p ) .  

6. B a d  f i l le rs  in t h e  M a r k o v  p r o c e s s  

In this section we show tha t  S2(p) is finite. We will apply the Bernstein inequality 

to the r andom variables - l og#s (F ) ,  where F runs over fillers of the order one 

subskeletons of the skeleton s~. As a result we get a bound for the probabi l i ty  

tha t  the empirical  mean value of - log #s (F)  differs essentially from gE(kul  + ll ). 

This  will ensure an exponential  bound for the probabil i ty  tha t  the filler is bad 

given by = t. 

The  following useful l emma is an immedia te  consequence of the Bernstein 

inequality, which actual ly  gives an exponential  bound for the probabi l i ty  ([2], 

Ch. 2). It  can also be deduced from Cram~r ' s  large deviat ion theorem (see 

e.g. [3], XVI,  w Theorem 1). For the reader 's  convenience we give a direct 

e lementa ry  proof  of the lemma.  

LEMMA 1: Let (l  , ~2, . . . be independent identically distributed random variables 

such that Ee  ~le'l < cx~ for some a > 0 and E(I  = O. Then for every ~ > 0 there 

exists to such that 

P(I~I + " "  + ~ t l / t  > ~) < l i t  4 

for all t >_ to. 

Proo~ Ins tead of Ee  ~le'l < oo it suffices to assume E~ N < oo for an even 

integer N _> 10. Let p(i, N)  be the number  of ways N can be represented as a 

sum of i integers >_ 2, including the order of summat ion;  we have, e.g., 

p(1, N)  = 1, p(2, N)  = (N - 2)/2,  p(N/2,  N ) =  1. 

We also define p(N)  = max(p(1,  N) ,  p(2, N), . . .  ,p(N/2,  N))  and let 

re(N) = max{IE~l~[ :  j = 0, 1 , . . . , N } ,  
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where we set E~j ~ = 1. Since E~j = 0, we clearly have 

( N ) E ( , k ' . . . E ( t k ' ,  E(( (1  + .. .  + ~t) n ) 
-= E kl . . . . .  k, 

where the summation is over all nonnegative integer vectors ( k l , . . . ,  kt) such that  

kl +- . .  +kt = N and k 3 > 2 whenever k s ~ 0. I f t  > N then the number of such 

vectors with exactly i nonzero coordinates is 

so the sum is bounded by 

N , ( N / 2 - 1 ) ( / / 2 ) P ( N ) r n ( N ) t N / 2  < C'(N)tN/2. 

Now the Chebychev inequality applied to ~N yields 

C'(N) tN/2 N/2 
P([(I  + ' "  + ( t [  > 8t) <_ ~NtN < C' (N,~) t -  , 

which ends the proof of the lemma, l 

Given that  br --- t, the filler F of s,  is a concatenation of t fillers of order one 

subskeletons of st.  By the Markov property these order one fillers are independent 

and equally distributed except for the initial filler of length ku_,,~r + l-mr+l and 
the central filler of length ku_ 1 + lo. We denote them by F - i  and F0, respectively. 

The other order one fillers in F will be denoted Fl, F2, . . . .  Clearly it may happen 

that  - m r  = - 1 ,  so F-1 = F0, in which case there are t - 1 other fillers; otherwise 

there are only t - 2. We will write ~j = - logps(F~). The conditional measure 

#,(F3) depends only on the manner in which the block of length Ij between 

two consecutive runs of markers is filled in. It follows that  the variables ~j are 

independent and, for j 7~ 0, identically distributed. Notice that / . t , (Fj )  > Pmin 1', 

where prnin iS the least positive entry of the transition matrix. Therefore there 

exists a > 0 such that,  for j ~ 0, 

E(e ~ ' )  = ~ E(e-~'l~176 l l J = l)P(lj = l) < Gh(1/p~i ,)  < ~ ,  
/=1 

since Gt, (s) has no poles in a disk of radius > 1 around the origin. It  follows 

that  the random variables ~j - E(jj, j # 0 satisfy the assumption of Lemma 1. 

By the same token 

E(e ~'r176 < oo 
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for some oe > 0. 

By Lemma 3.1 in [1] we have 

- lim log tt8 (F) / l (sr)  = f 
r 

with probability 1. On the other hand, by the law of large numbers, 

-+ E(k l + 11) = A a.s.  

It  should be noted that  the exceptional quantities u_m~, u_ 1, and l0 do not affect 

the value of the limit. Indeed, it is easy to see that  lo/b~ ~ 0 while for u-1 and 

u-m~ we observe that  u-1 _< U--mr = k(r - 1) + u, where u is independent of b~ 

and distributed as Ul. Therefore it remains to show r/br ~ O. This, however, is 

a simple consequence of the Borel-Cantelli lemma, for given a > 0 we can write 

E P(r/b~ > c~) = E P(b~ < r /a )  
r r 

[~/~] 

r t = l  r 

Consequently, - l o g # 8 ( F ) / b r  ~ fA and, thanks to Lemma 5.1 in [1], E~j = fA 

for j r 0. 

Now we define an auxiliary event 

Br = {ll(s~)/b~ - AI > 5}, 

where (~ < min(e/4f ,  A/24, cA/16). From now on, for the sake of simplicity, we 

only consider the case where -rn~ r - 1 ,  the other case being handled similarly. 

Since clearly l(s~) > kb~, 

P(B~, F is bad { b~ = t) = P(B~, Its(F) > e (~-I)l(~) [ b~ = t) 

= P  (B~, r -t- CO n L " "  n t- ~ t -2  < ( f  -- r I b~ = t) 

( I  :1 ) < p  B ~ , f  A -  l ( r )  > - ~ - I b ~ = t  

+ P  B~, ~ - 1 + @ + " ' + G - 2  >___f f~_lb~=t  . 
t 

The first te rm vanishes by the choice of & The second term is bounded b y  

P > -- -Ibr = t  

+ P  B~, r 1 6 2 1 6 2  >__~_lb~=t 
t 
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( < P  @ > - -  + P  - > 8  t 
- t - 1  ' 

which is less than e - ~ t  + 1/(t - 1) 4 for some positive constant •t and all suf- 

ficiently large t (independently of r). The last assertion is a consequence of the 

exponential decay of the distribution of (0, and of Lemma 1 applied to (j - ECj. 
Therefore we obtain 

OO 

P(B~, F is bad) = E P(B~, F is bad l bT = t)P(br = t) 
t= l  

to -1  oe 

<- E tr772~-2 + E (e-~lt + 1 / ( t -  1)4)trr~ 2T-2 
t = l  t=to 

<_C12(k)r~ 2~. 

Now we are going to obtain an exponential bound for the probability of B~. 

Clearly the skeleton length l(sk) decomposes into the following five terms: ku_m~, 
, t and ~ are the ku-1, /0, k(Ul I -~- "'" -I- ut-21), and l~l + . . .  + lt_l, where the Uj lj 

random variables uj, j r - m r , - 1 ,  and l j , j  r 0 occurring within the skeleton 

st, relabeled accordingly. Therefore 

P ( B ~ l b ~ = t )  <_P U--mr > ~-~ I b ~ = t  

+ P  u _ l > - ~ l b ~ = t  

+ P  l o > - ~ l b T = t  

~ ( ~ ~ u ; - ~ - ~ l ~ ' ~ - - ~  ) t  

( ' b ~  ) + P 1'1 + ' t  + It-1 Ell > g I br = t . 

We first note that since the distribution of l0 decays exponentially, the third 

summand is bounded by e -~2t for some ~2 > 0. Since u-1 <_ u-m~, the second 

summand is bounded by the first. 

For the first term we write U-m~ = k(r - 1) + u as above and note that for 

some ~a > 0 

P(u-mr > ~t/5k I b~ = t) <_ P(ul  > ~t/lOk) + P((r - 1) > 5t/lOk ] br = t) 

< e -r3~t + al(r, t), 

where al(r,t)  = 1 or 0 according as t is or is not less than lOk(r - 1)/5. 
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For the fourth summand  we will apply L e m m a  1. To avoid the error t e rm 

caused by the  condit ion of being in the skeleton sT we introduce new random 
I !  I t  variables. Let % ,  u 2 , . . ,  be independent  and dis t r ibuted as ul .  Now, for each j ,  

" > r occurs, we will repeat  independent  trials until a value less than  r whenever  uj _ 
appears .  The  first appearance  of a "short" result will be called u}. The  apparen t  

abuse  of nota t ion  will not. affect tile calculation because the new random vector  

(U'l,..., u't_2) will have the same distr ibution as its counterpar t  tha t  appears  in 

" ' .  I t  is clear tha t  these are nonnegat ive  the fourth term.  We will write wj = uj - u j  

i.i.d, variables with w i < u~ and wj = 0 iff u~' < r. Observe tha t  wj r 0 happens  

with probabi l i ty  P(u~ >_ r) = P(Ul >_ r) = r f  -1,  so 

Ewj < E i ~  ~-l < 4r~ T-1. 
I T  

The  fourth s u m m a n d  is thus major ized by 

( " E U l l ~ )  (Wl  + " '  + w t - 2  u'( + ... + ut_ 2 _ > + P 
P t t 

( "  " EUl 5 2Eul ) 
<P- ul +'"t- 2 + u t - 2  - > lOk t - - 2  

+ p wl + . . . +  wt-2 > _ . 
t - 2 10k t 2 

Since for t sufficiently large the right hand sides of both  inequalities are greater  

than  5/20k, we can use L e m m a  1 for the first probability.  The  second is bounded  

by 

p Wl+t_2-" + w t - 2 - E w l  > ~ - E w l  . 

Since Ewl < 4 r r f  -1,  we have (f/20k - E w l  > 5/40k for r > r0, say. This  allows 

us to use L e m m a ' l  for the last probabili ty,  too. Consequently,  the fourth t e rm 

is bounded  by 2/(t - 2) 4 for all r >_ ro, and all sufficiently large t ( independent ly  

of r). 
Now it should be clear how to major ize  the fifth summand .  We can just  apply  

L e m m a  1 to the independent  r andom variables l~ and get a similar bound of the  

form 1/(t - 1) 4. As a result we obtain  that ,  for r _> r0 and all sufficiently large 

t, t _> to, say, 

2 1 
P ( B T  [ bT = t )  <_ e -~a t  + a l ( r , t )  + 2e  -~2 t  + ~ + - -  ( t - - 2 )  4 ( t - -  1) 4. 
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Consequently, 

to [10k(~-l)/a] 
P(B~) <_ E tr~2~-2 + E tr~?2~-2 

t : l  t : t o  

+ e-~3t +'2e-~2t + (t - 2) - - - - - ~  
t= to  

~_Cl3(k)r3~ 2r. 

-t- ( t ~ l  1)4 ) trr] 2r-2 

In order to prove that S2(p) converges we now argue as in the proof for SI(p). 
As above, we denote by F the filler of .%. For N sufficiently large we have 

E (c~+lP#s(F is bad)) <_ (Ec~+IN) p/N (E(lt~(F is bad)N/(N-P))) (N-p)/N 

Since N/(N - p) > 1, we may write 

(#s (F  is bad) N/(N-p)) <_E(#s(F is bad)) = P(F is bad) E 

<_C12(k)r~ 2~ + Cl3(k)r3r] 2r <_ C14(k)r3r7 2~. 

Consequently, 

S2(p) = E E(C~+lP#s(F is bad)) 
r 

< E Cg(k, N)Pr2PTl-rP(C14(k)r3772~) (N-v)/N 
r 

_<C15 (k, N,p) E r7q(2-p-2p/N> 
7- 

and the series S2(p) converges if N > 2p/(2 - p). 

7. Bad  fillers in the  Bernoul l i  process  

By the nature of the coding there is no marker structure in the Bernoulli process 

:X. Therefore in order to calculate the probability that a filler F in )( correspond- 

ing to the skeleton sr on top is bad, we will condition on l(sr). The following 

crude estimate will be sufficient for our purpose: 

t 

P(l(sr) = t) <_ P(l(sr) <_ t) < P(br < t) <_ Ejr~? 2~-2 <_ t2r~ 2~-2. 
y = l  

Now we can write 

P ( F  is bad) <_ E P ( P  is bad[/(s~) = t)t2m? 2~-2. 
t 
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For l(s~) = t we clearly have 

- log #(F') = Z ~3, 
.7=1 

where the random variables ~i, corresponding to single symbols in t O, are 

independent and distributed as - log#(~0) .  It is clear that E(~1) = h. As the 

condition F is bad is equivalent to the inequality - log~(t e) > l(s~)(fz + ~), we 

can apply Lemma 1 to the variables ~3 - h and obtain as before, for all sufficiently 

large t, 

P ( F  is bad[l(s~)  = t) <_ C16(k)/ t  4, 

which readily implies S3(p) < oc. 

We have proved the following theorem. 

THEOREM 1: Let the processes X ,  X be mixing Markov and Bernoulli, 

respectively. I f  h ( X )  > h( f ( ) ,  then there exists a finitary coding from X to 

) (  such that for every p < 2 the code length is an L v random variable. 

It should be observed that, if the marker length k is large enough, our proof 

applies to the code constructed in [1] and, in the Bernoulli-to-Bernoulli case, to 

the Keane-Smorodinsky code [5]. 

8. B e r n o u l l i - t o - M a r k o v  cod ing  

In this section X will stand for a Bernoulli process with entropy h ( X )  = h and 

will denote a mixing Markov process with h(~') =/L < h. According to [1] we 

may assume that there is an "independent" marker process, common to X and 

){. The marker in X will be denoted by /17/. Unlike in the Markov-to-Bernoulli 

case, where M was a single word, this marker is a collection of words of length 

k all starting from the same symbol ~1, say. The marker in X is still a single 

word. The measure of /9/  decays exponentially with k, because markers in X 

and ){ have the same measure. The filler entropies in X and X will be denoted 

by f and f ,  respectively. By choosing k sufficiently large we may assure f - f 

positive and in fact arbitrarily close to h -/~.  Other parameters of the coding, 

such as l(sr), br, lo,m~, u - l ,  etc., are determined by the marker process so they 

are functions of the Bernoulli process X. 

The outline of the argument is the same as before. The convergence of SI(p) 

and S2(p) follows from the previous part ,as a special case. The proof for S3(p) is 

somewhat different, because the distribution of the filler measure now depends on 
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the parameter r which influences the filler length (the block filling in the kuj part  

of the corresponding order one filler in J~ is now random, unlike in the previous 

case where M was a single word). 

If fl' is a filler of the skeleton s~ in )~, then _P has length l(s~) and is a con- 

catenation of b~ blocks (order one fillers) each corresponding to a run of markers 

followed by a gap of length lj. Since each marker starts from the same definite 

symbol al ,  by the Markov property the order one fillers ~'j are independent. 

Moreover, except for the two exceptional fillers P-m~+l and -f'0, they are identi- 

cally distributed (both unconditionally and conditionally given that br = t). As 

in the Markov-to-Bernoulli case, it will be useful to relabel the fillers by giving 

the exceptional fillers the indices - 1 , 0 ,  t h u s  t ~ _ m r + l  : /~P--I, /70 : /~0, and for 

br = t we have 
- - - !  - - !  

-P = /7'-.'~,.+1 " " ' P - l P o  . . . .  " Fn,.-1 = F'_IF~ F m , _ 2 F 6 F m , _  1 - '  - !  - '  "" " F ;_  2 . - !  

The corresponding quantities lj and uj will be relabeled accordingly. Of course 

it may happen that -m~ = -1 ,  in which case there is only one exceptional filler; 

the argument in this case will be quite similar and is left to the reader. 

We s e t  ~j = - log/is (/~). By [1], Lemma 5.1, we have - log #s(/~) = ~t_ 1 + ~  + 

~ +" "" +~t-2.-' An important feature of ~ is that its distribution depends not only 

on lj ! but also on us ! ,  hence on r (because the condition uj t < r for j > - 1  alters 

the distribution of uj!). This is because the part of the filler corresponding to the 

run of markers of length kuj t is now filled by a random sequence. To overcome 

this difficulty we use again the random variables uj ! and uj".  We recall that the 
U .  ! s , J = 1, 2 , . . . ,  t - 2, can be viewed as produced by a random experiment with 

uj'  = uj !! - wj,  where the uj !! are independent and distributed as ul. It should 

be clear that  to each uj n, j > 0, there corresponds an extension _f~' of -f~ of 

length k u j n +  lj r. Here _P~ has been extended by adjoining a prefix consisting of a 

run of wj markers chosen at random according to the distribution of the Markov 

process so that the resulting _f~' has the same distribution as the unconditional 

-f'l. The random variables ~]' = - log#8(P~' )  are independent and, for j > 0, 

distributed as - l o g  #8(/~1), so their distribution is independent of r. We will 

apply Lemma 1 to the ~]! - E~j'. This will be possible because Ee~r ' < oc for 

some a > 0. Indeed, the length o f /~ !  is distributed as kul + 11. The lengths 

kul and ll are determined by a Bernoulli process, so are independent and have 

generating functions which are analytic on a disk of radius > 1. The generating 

function G of kul  + 11 therefore has the same property, whence 

ot~" E eel [og(l/pmln)t P ( k u l  + 11 t) = G(1/Pmin a) < oo E(e ~) < 
t 
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for a small enough. Similarly we get Ee ~ '  < oo. The event Br will be defined 

as before, so it is determined by the Bernoulli process X. As in the Markov-to- 

Bernoulli case we can write 

P(B~, T' is bad I b~ = t) = P(B~, #s(f') < e-(I+~)l(~) l b~ = t) 

=P(B;, ~'-1 + ~; ''[- ~"1 "~-""" ~- (~;-2 :> ( ]  "~- ()/( 'St) I b,- = t) 

<_P(B~, f A /(st) I ek 
- > Ib~=t )  

( d(~,) ) 
+ P  B~, ~ ' - ' + ( ; + ' " + ~ L 2 - ' f A t  > ~ l b ~ = t  . 

The first term vanishes by the choice of (f and the second is boundcd by 

p ~ 1 > _ _ ~ _ l b ~ =  t + P  > ~ l b ~ = t  

< P  

+ P  B;, ~ ; + . " + ~ - 2 t  - f A  > - - ~ l b ~ = t  

~kt c t ~'~ + - . .  + r  > . 
~ ' - '> - -6 -  + P  ~ ; > - -  + P  - t - 2  - 

The first summand is bounded by P(~I + krlog(1/Pmi,) > ekt/6) <_ e -f14t + 

a2(r,t), where/34 > 0 and a2(r,t) vanishes for t > 12e-lrlog(1/Pmin). It is clear 

that the second summand is bounded by e - ~ t  for some ~5 > 0. For the third 

summand we will use the random variables ~' .  First note that the variables 

satisfy the inequality 0 i _< ~j'. Now using Lemma 1 we can see that for large t 

the third summand is bounded by 

P r  A > + P  > 
t - 2  i - ~  ' 

which is less than or equal to 

( b ) 1 0 1 + ' " + 0 t - 2  _E01 > -E01 < 
( t  - 2 )  - - - - - ~  + P t - 2 2-0 - ( t  - - 2 )  4 ' 
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because if k is chosen sufficiently large then 

E01 <E(I{o,#o}~'I') 
o o  

= E ( ( 1  l u l  = i ) P ( u ,  -- i)  
i = r  

o o  

<- Z ik log(1/Pmin)P(ul = i) 
i = r  

O~ 

_<k log(1/pmin)(1 - ' q ) Z i r f  '-1 
i = r  

~2k log(1/pmin)rzf -1 < e)~/40 

for all r > 1. We have obtained, for r > 1 and all sufficiently large t, 

P(B~, fi' is bad I b~ = t) < e -13*t + a2(r, t) + e -13st + 

Therefore, by a calculation as in Section 6 we get 

P(BC~, P is bad) < CiT(k)r3~ 2r. 

(t - 2) 4 " 

The proof of the convergence of S3(p) is now concluded along the same lines as 

the convergence of S2(p) in the Markov-to-Bernoulli case. Since the coding from 

)(  with an independent marker process to the given mixing Markov process of 

a lower entropy simply consists in lumping certain states (so it has code length 

equal to one), we obtain the following result. 

THEOREM 2: Let the processes X and f(  be Bernoulli and mixing Markov, 

respectively. I f  h (X)  > h(f() ,  then there exists a finitary coding from X to 

f(  with the property that the code length is an L p random variable for all p < 2. 

9. M a r k o v - t o - M a r k o v  c o d i n g  

In this section we consider two mixing Markov processes X1 and X2 such that 

h(X1) > h(X2). According to [1] there exist a Bernoulli process Y and a mixing 

Markov process Z with "independent" markers (common for Y and Z) such that  

h(X1) > h (Y)  > h(Z)  > h(X2) and X2 is obtained by lumping certain states 

in Z. By Tlmorem 1 there exists a finitary code r from X1 to Y such that its 

code length is an L p function for all p < 2. Similarly, by Theorem 2, there is a 

r : Y ~ Z with the same property of the code length. We now wish to examine 

the code length of the composed coding X1 -~ X2. 
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LEMMA 2: Let X , Y ,  Z be arbitrary stationary processes and let r : X --+ Y and 

r : Y --+ Z be finitary codes. Assume that for some Pl, P2 > 1 with Pl <_ P2 + 1 

the code Iength of r is in L p for ali p < Pl and the code length of r is in L p 

for ali p < P2. Then the composed code r o r has code length in L p for all 

P < PlP2/(P2 + 1). 

Proof: Let C1,C2,C be the code length of r 1 6 2 1 6 2  o r respectively. By the 

definition of code length we have 

c(x) < c2(r 2ma {Cl(TJ ) : IJl < 

Since every p < PlP2/(P2 + 1) is less than P2 and by assumption E(C2 p) < 0% it 

suffices to consider the second term. Recall that for every nonnegative random 

variable [ and a fixed q > 0 the quantity E([  v) is finite for all p < q iff for all 

p < q w e h a v e P ( ~ > A ) = O ( A  -p) a s A ~ o c .  

Now we set ~ = max{Cl (T ix )  : ]j[ < C2(r and let 0 be a positive real 

number. For any ql < Pl and q2 < P2 we have 

P(~ > A) =P(~ > A, C2(r > X ~ + P(~ > X, C2(r <_ X e) 

<_O (X -0q2) + E P(C1TJx > X) 
Ijl<_:~o 

= o  (x + x~ (A-q'). 

Now setting 0 = Pl/(P2 + 1) yields P(~ > A) = 0 (X -p) for all p < PlP2/(P2 + 1), 

which concludes the proof of the lemma. | 

The next result follows readily. 

THEOREM 3: Let X1 and X2 be mixing Markov processes such that h(X1) > 

h(X2). Then there exists a finitary coding from X1 to X2 such that the code 

length is in L p for all p < 4/3. 

The following corollary applies in particular to the Keane-Smorodinsky coding 

of Bernoulli processes of unequal entropies. 

COROLLARY: For n > 2 let X 1 , . . .  , Xn+l be stationary processes and r : Xi -+ 

Xi+l,  i = 1 , . . .  ,n, be finitary codes with code length in L p for every p < 2. 

Then the expected length of the composed code Cn o . . .  o r is finite. 

Proof: We prove by induction that the length of the composed code is an L p 

function for a l l p  < 2n/(2 ' ~ -  1). To this end we let r = r Pl = 2 , r  = 
Cn o . - .  o r  P2 = 2n-1/(2 n-1 - 1). Now apply Lemma 2. | 
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